Effect of hyperpolarization-activated current I(f) on robustness of sinoatrial node pacemaking: theoretical study on influence of intracellular Na(+) concentration.

نویسندگان

  • Yasutaka Kurata
  • Ichiro Hisatome
  • Mamoru Tanida
  • Toshishige Shibamoto
چکیده

To elucidate the effects of hyperpolarization-activated current I(f) on robustness of sinoatrial node (SAN) pacemaking in connection with intracellular Na(+) concentration (Na(i)) changes, we theoretically investigated 1) the impacts of I(f) on dynamical properties of SAN model cells during inhibition of L-type Ca(2+) channel currents (I(CaL)) or hyperpolarizing loads and 2) I(f)-dependent changes in Na(i) and their effects on dynamical properties of model cells. Bifurcation analyses were performed for Na(i)-variable and Na(i)-fixed versions of mathematical models for rabbit SAN cells; equilibrium points (EPs), limit cycles (LCs), and their stability were determined as functions of model parameters. Increasing I(f) conductance (g(f)) shrank I(CaL) conductance (g(CaL)) regions of unstable EPs and stable LCs (rhythmic firings) in the Na(i)-variable system but slightly broadened that of rhythmic firings at lower g(f) in the Na(i)-fixed system. In the Na(i)-variable system, increased g(f) yielded elevations in Na(i) at EPs and during spontaneous oscillations, which caused EP stabilization and shrinkage in the parameter regions of unstable EPs and rhythmic firings. As g(f) increased, parameter regions of unstable EPs and stable LCs determined for hyperpolarizing loads shrank in the Na(i)-variable system but were enlarged in the Na(i)-fixed system. These findings suggest that 1) I(f) does not enhance but rather attenuates robustness of rabbit SAN cells via facilitating EP stabilization and LC destabilization even in physiological g(f) ranges; and 2) the enhancing effect of I(f) on robustness of pacemaker activity, which could be observed at lower g(f) when Na(i) was fixed, is actually reversed by I(f)-dependent changes in Na(i).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Hyperpolarization-Activiated Current “if ” on the Rate of Spontaneous Activity and Cycle Length before and after Cutting of Atrial Muscle away from Intact Sinoatrial Node of Rabbit

It has been shown that the hyperpolarization-activated current “if” that is blocked by 2 mM Cs+ plays a minor role on pacemaker activity of the center and a major role on activity of the periphery of rabbit intact sino-atrial node. On the other hand some investigations showed that if the atrial muscle, surrounding the sino-atrial node, is cut away there is a shift in leading pacemaker site from...

متن کامل

Pacemaker current (I(f)) in the human sinoatrial node.

AIMS Animal studies revealed that the hyperpolarization-activated pacemaker current, I(f), contributes to action potential (AP) generation in sinoatrial node (SAN) and significantly determines heart rate. I(f) is becoming a novel therapy target to modulate heart rate. Yet, no studies have demonstrated that I(f) is functionally present and contributes to pacemaking in human SAN. We aimed to stud...

متن کامل

Structure and function of cardiac pacemaker channels.

Cardiac pacemaking is controlled by a mixed Na(+)/K(+) current named I(f), which is activated by hyperpolarized membrane potentials. Recently, a family of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels has been cloned. The members of this family exhibit the general features of I(f) channels. This review describes the molecular diversity of the HCN channel family and t...

متن کامل

The role of the funny current in pacemaker activity.

Abstract: Pacemaking is a basic physiological process, and the cellular mechanisms involved in this function have always attracted the keen attention of investigators. The "funny" (I(f)) current, originally described in sinoatrial node myocytes as an inward current activated on hyperpolarization to the diastolic range of voltages, has properties suitable for generating repetitive activity and f...

متن کامل

Direct negative chronotropic action of desflurane on sinoatrial node pacemaker activity in the guinea pig heart.

BACKGROUND Desflurane inhalation is associated with sympathetic activation and concomitant increase in heart rate in humans and experimental animals. There is, however, little information concerning the direct effects of desflurane on electrical activity of sinoatrial node pacemaker cells that determines the intrinsic heart rate. METHODS Whole-cell patch-clamp experiments were conducted on gu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 304 10  شماره 

صفحات  -

تاریخ انتشار 2013